
CODE PULSE: SOFTWARE ASSURANCE (SWA) VISUAL
ANALYTICS FOR DYNAMIC ANALYSIS OF CODE

APPLIED VISIONS

SEPTEMBER 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-249

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2014-249 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/ S /
WILMAR SIFRE
Work Unit Manager

 / S /
MARK H. LINDERMAN
Technical Advisor, Computing
& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEPTEMBER 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

AUG 2012 – MAY 2014
4. TITLE AND SUBTITLE

CODE PULSE: SOFTWARE ASSURANCE (SWA) VISUAL
ANALYTICS FOR DYNAMIC ANALYSIS OF CODE

5a. CONTRACT NUMBER
FA8750-12-C-0219

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
Other

6. AUTHOR(S)

Hassan Radwan, Dylan Halperin, Robert Ferris, Ken Prole

5d. PROJECT NUMBER
DHS2

5e. TASK NUMBER
AV

5f. WORK UNIT NUMBER
IS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Applied Visions, Inc.
Secure Decisions Division
6 Bayview Avenue
Northport, NY 11768

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-249
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2014-4339
Date Cleared: 12 Sep 14
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This is the final report for Code Pulse, a BAA project by Secure Decisions in the software assurance space. The original
intent was to enhance static application security testing by introducing execution profiles of target applications to the
vulnerability analysis process. However, as the concept was introduced to evaluators via prototypes, the feedback
steered the project towards implementing a real-time code coverage tool for penetration testing activities. Code Pulse is
an open source tool that provides a real-time white box perspective of coverage activity for penetration testers as they
conduct their testing activities. This report details the activity for this project along with describing the evolution of the
concept from original vision, to end state.

15. SUBJECT TERMS
Application security, penetration testing, black box, white box, software assurance, dynamic analysis, DAST, interactive
application security testing, IAST, tracing, runtime, real-time, code coverage, visualization, static analysis, SAST, cyber
security.
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILMAR SIFRE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-2075

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

43

Contents
List of Figures .. iii

List of Tables ... iii

1 Executive Summary .. 1

2 Introduction ... 2
2.1 Code Pulse Evolution ... 2
2.2 Static Analysis Workflow Problem Area ... 2
2.3 Penetration Testing Code Coverage Problem Area.. 4

3 Methods, Assumptions, and Procedures ... 6
3.1 Task 1 – Investigate Dynamic Analysis Tools ... 6
3.2 Task 2 – Design Prototype ... 6
3.3 Task 3 – Develop Prototype ... 6
3.4 Task 4 – Test, Demonstrate, and Evaluate ... 7
3.5 Task 5 – Prepare for Technology Transition .. 7
3.6 Task 6 – Manage and Document .. 7

4 Results and Discussion ... 8
4.1 Tracing Tool Research ... 8

4.1.1 Evaluation Criteria .. 8
4.1.2 Evaluated Tools .. 8
4.1.3 Evaluation Methodology ... 9
4.1.4 Evaluation Results .. 10

4.2 Design... 12
4.2.1 Dynamic Tracing Use Cases ... 12
4.2.2 Dynamic Enhanced Static Analysis Use Cases .. 12
4.2.3 Penetration Testing Code Coverage Use Cases .. 13
4.2.4 User Interface Design ... 13

4.3 Development .. 14
4.3.1 Architecture... 14
4.3.2 Technology Stack.. 15
4.3.3 Dynamic Tracer .. 17
4.3.4 Alpha Prototype .. 18
4.3.5 Final User Interface... 22

4.4 Testing and Evaluations ... 28
4.4.1 Testing... 28
4.4.2 Demonstrations and Evaluations... 29

4.5 Transition ... 31
4.5.1 Market Analysis .. 31
4.5.2 Competitive Analysis .. 32
4.5.3 Transition Strategy .. 33

i

5 Conclusions ... 35

6 References ... 36
7 List of Acronyms .. 37

ii

List of Figures
Figure 1. Code Pulse ... 1
Figure 2. Code Pulse approach to fusing SAST results with dynamic traces 3
Figure 3. Code Pulse approach to penetration testing code coverage ... 5
Figure 4. Early wireframe of a standalone interface for the Code Pulse dynamic tracer 13
Figure 5. Layout and visualization exploration mockup .. 14
Figure 6. Dynamic tracing high-level component architecture .. 15
Figure 7. Snippet from the Code Pulse message protocol specification 18
Figure 8. Dynamic Tracer trace configuration screen .. 19
Figure 9. Trace segments filter showing before-and-after states of filter selection 20
Figure 10. Call Frequency filter showing before-and-after states of filter selection 21
Figure 11. Trace details page from the alpha prototype ... 22
Figure 12. Final Code Pulse code coverage user interface ... 23
Figure 13. Mockups of package tree view to control what is represented in the treemap 24
Figure 14. The Application Inventory tree view next to the codebase treemap 25
Figure 15. Changing the “All Activity” recording to a time segment .. 26
Figure 16. Agent Connection Message ... 27
Figure 17. Dependency Check report for third-party JAR files .. 28
Figure 18. Code Pulse website .. 34

 List of Tables
Table 1. The test application set used for the dynamic tool evaluations 10
Table 2. Tracing numbers with some of the test applications... 12
Table 3. Dynamic tracing use cases .. 12
Table 4. Dynamic enhanced static analysis use cases ... 12
Table 5. Code coverage use cases ... 13
Table 6. Code Pulse alpha version evaluations ... 29
Table 7. Code Pulse beta version evaluators .. 31

iii

1 EXECUTIVE SUMMARY
In this effort funded by the Cyber Security Division of Department of Homeland Security (DHS)
Science &Technology Directorate, Secure Decisions researched and evolved a concept to inte-
grate runtime observations of target software in application security assessment processes. The
original intent of this project was to enhance static application security testing by introducing
execution profiles of target applications to the vulnerability analysis process. However, as the
concept was introduced to evaluators via prototypes, the feedback steered the project towards
implementing a real-time code coverage tool for penetration testing activities. Code Pulse is an
open source tool that provides a real-time white box perspective of coverage activity for penetra-
tion testers as they conduct their testing activities.

Figure 1. Code Pulse

The Code Pulse project effort revolved around three key milestones: an alpha prototype to
demonstrate to early evaluators and validate the concept; a beta prototype to fine tune the utility
and usability of the tool; and finally the release of the first stable version as a TRL6 open source
tool part of the vibrant Open Web Application Security Project (OWASP) project inventory. This
report details the problem areas addressed by Code Pulse, the adopted methodologies to steer the
project, the results of the varied project activity, and finally the conclusions we draw at the end
of the project’s period of performance.

Approved for Public Release; Distribution Unlimited.
1

2 INTRODUCTION
Application security tools have up until recently focused on either a white box static analysis of
target codebases, or alternatively a black box dynamic analysis for penetration testing. More re-
cently we’ve seen a new breed of security applications aiming to introduce a white box dynamic
perspective to the analysis process. Some of these tools classify themselves as Interactive Appli-
cation Security Testing (IAST) tools. Although Code Pulse went through an evolution of its fo-
cus area during its period of performance, two constant themes have been the belief that runtime
observations of target codebases provide a wealth of information that will improve the analysis
processes of application security testing, and the recognition that it is best to present this infor-
mation in a visual analytics manner to improve the understandability and communication effec-
tiveness of the relevant data.

In this section we’ll describe the problem areas targeted by Code Pulse and the evolution of our
thinking during the period of performance as we talked with evaluators and gained a better un-
derstanding of their needs.

2.1 Code Pulse Evolution
The originally proposed concept of Code Pulse was to introduce a new technique in software as-
surance analysis by merging application runtime observations with static source code analysis to
enhance static analysis workflows. This relies on harvesting execution profiles from the runtime
execution of the target codebases. Key factors are collected and stored from the execution pro-
file, such as when each part of the code is used in the application and how frequently it is used.
These in turn are correlated with the results of static analysis tools to identify the presence of a
weakness during the application execution, as well as how many times the potentially vulnerable
code was executed. We coined the term Dynamic Enhanced Static Analysis (DESA) to describe
the approach and you’ll see it referred to in various places in this report as a short-hand for the
concept. The motivations for this approach are described in section 2.2.

Secure Decisions both advocates and follows an evaluation-based development approach. This
relies on getting user feedback as early as possible to course correct earlier rather than later when
it’s often too hard or even impossible. Our first demonstration milestone for Code Pulse was an
alpha prototype which we built to target the use cases we identified for the DESA approach. The
Code Pulse prototype was presented to several evaluators and ended up getting a lukewarm reac-
tion. The listing of evaluators and the results discussion is detailed in section 4.4.2. This gave us
reason to pause and reflect on the feedback, ultimately resulting in a direction shift for Code
Pulse.

With the technical capabilities we’d built up for the alpha prototype, and the areas where we got
positive (and even enthusiastic in some cases) feedback, we decided, with our Program Manag-
er’s blessing, that the best course of action was to produce a tool that focused on code coverage
for penetration testing activities. The motivations for that are described in section 2.3 and the re-
sulting tool is presented in section 4.3.5.

2.2 Static Analysis Workflow Problem Area
The typical static analysis process involves a number of user personas, but for the purposes of
the following description we’ll focus on just two: the security analyst assessing the security pos-
ture of a target codebase, and the developer tasked with fixing vulnerabilities as they are report-
ed. Most security analysts will rely on one or more Static Application Security Testing (SAST)

Approved for Public Release; Distribution Unlimited.
2

tools to identify potential vulnerabilities in the codebase. These results will typically number in
the thousands of findings and are triaged by the security analyst to reduce them to a manageable
short list of prioritized issues. Developers are at that point tasked with addressing the prioritized
list of vulnerabilities. This cycle repeats itself for every security assessment dependent on the
motivation and practices of the concerned parties. Although this is a simplified description of the
workflow, there are two inefficiencies that would benefit greatly from an improved process.

The first inefficiency is the broad net cast by the SAST tools which will assess all areas of the
codebase. However, if you consider the realities of a typical codebase, you’ll find a lot of extra-
neous code for things such as unit testing, database maintenance scripts, application packaging
scripts, and the like. While this code is relevant for the development and deployment teams, it is
irrelevant to the attack surface which ultimately is the desired area of focus for security analysis
assessments. Therefore, focusing on only the relevant weakness, those that are part of the attack
surface, would significantly boost the efficiency of both the triage and remediation activity for
security assessments.

The second identified inefficiency in the SAST workflow relates to the timing of when develop-
ers are asked to remediate a vulnerability. In our current software development realities, security
assessments are few and far between. This translates into remediation requests to the develop-
ment team weeks or months after they’ve last looked at the source code. A number of studies
have been conducted on both the short and long term memories of developers and the results
have shown that there is only so much context that developers can keep in memory. Therefore,
with the typical assessment frequencies, by the time developers are asked to remediate a weak-
ness they’ve most likely forgotten the context that would enable them to effectively and effi-
ciently dispatch the vulnerability.

Figure 2. Code Pulse approach to fusing SAST results with dynamic traces

Approved for Public Release; Distribution Unlimited.
3

The Code Pulse approach to this solution, represented in Figure 2, was the target for our alpha
prototype. The concept was to fuse the results of static analysis tools with dynamic traces and
represent the correlated data using visualizations. This served two key use cases: prioritization of
weaknesses by security analysts/auditors; and remediation activities by developers. Identifying
which code was executed and correlating that with the statically observed vulnerabilities would
help security analysts identify which weaknesses are part of the attack surface. Visually repre-
senting the call graph and execution timeline to developers would help them quickly remember
the context of the remediation they’re addressing as well as effectively understand what implica-
tions their changes would have.

2.3 Penetration Testing Code Coverage Problem Area
Penetration testing, also known as black box testing, has proven to be a highly effective approach
to identifying security issues in target applications. Penetration testers leverage a number of
manual techniques and Dynamic Application Security Testing (DAST) tools to probe the target
applications for any vulnerabilities that can be exploited. As exploits are discovered they are cat-
alogued and presented to the application maintainers for fixing. While penetration testing is a
useful and increasingly used process, there are certain issues in the process that need addressing:

• Coverage gaps – by definition, penetration testing is typically a purely black box per-
spective which makes it almost impossible to ascertain the attack surface coverage gaps.
How much or little of the attack surface was assessed is almost impossible to ascertain
without other means of understanding the application scope and how that correlates to the
testing activity.

• Unclear coverage overlaps – understanding the coverage overlaps between penetration
testing techniques – manual testing and/or multiple DAST tools – is very difficult. Each
represent the testing activity differently making it a considerable challenge to correlate
activity across tools.

• DAST tool tuning – DAST tools are tricky to configure due to the complex variations in
the target applications. Knowing when they’re misconfigured is critical to ensuring that
adequate coverage of the target applications is achieved.

• Coverage data communication – communicating coverage data is a significant chal-
lenge due to the lack of coverage insight from the black box perspective. Yet despite the
challenge, coverage data and the ability to communicate it is critical since it is ultimately
the true measure of whether an application has been adequately tested or not.

The Code Pulse approach to these set of challenges is to leverage dynamic tracing to represent
the code coverage in real-time to penetration testers while they are conducting their tests. While
penetration testers are conducting their tests on the target applications, Code Pulse traces the ap-
plication to expose its codebase logical hierarchy and extract the coverage data. This is presented
to the user in real-time visually providing them with a white box perspective into the application
coverage while they conduct their black box testing. This concept, adopted by Code Pulse after
the alpha prototype milestone, is represented in Figure 3.

Approved for Public Release; Distribution Unlimited.
4

Figure 3. Code Pulse approach to penetration testing code coverage

This approach has a number of benefits:

• Visually identifies coverage gaps – coverage gaps are identified visually and can be un-
derstood at-a-glance

• Compares coverage across testing tools – coverage data can be separated to identify the
activity by tool or technique as we as identify overlaps between the varied activity

• Communicates coverage activity – the coverage data is automatically processed and
displayed to the users making it significantly easier to communicate that information with
the other stakeholders

• Eases the DAST tuning process – visually seeing the coverage data quickly helps un-
cover DAST tool misconfigurations for quick and effective tuning

Approved for Public Release; Distribution Unlimited.
5

3 METHODS, ASSUMPTIONS, AND PROCEDURES
The Code Pulse project was managed using a modern iterative software/systems engineering ap-
proach. The cornerstones of our approach were research, design, development, testing, and eval-
uation. These were done iteratively with constant assessment and planning of the transition po-
tential and strategies throughout the process. Two distinct prototypes were generated throughout
the period of performance and presented to evaluators. The received feedback proved to be criti-
cal to the project, helping shape the development and transition directions as the project evolved.

Our effort on Code Pulse was split across six tasks, which although considered separate from a
focus area perspective, where often conducted simultaneously and iteratively. The methodolo-
gies, assumptions, and procedures for each of the Code Pulse thrust areas are detailed in the re-
mainder of this section.

3.1 Task 1 – Investigate Dynamic Analysis Tools
A key component of the Code Pulse approach is to trace applications at runtime to observe and
record an execution profile. Therefore, the selected technology used to provide the tracing capa-
bility is central to the functionality of Code Pulse. To mitigate risks associated with the technol-
ogy selection, the first task for Code Pulse was to identify the project’s data requirements, re-
search the available dynamic tools/libraries, identify the limitations of each of those
tools/libraries, and finally make a tool/library selection to base the project’s development around.
The details of this activity are presented in section 4.1.

3.2 Task 2 – Design Prototype
Although we’re strong proponents of leveraging agile and iterative methodologies for software
development, identifying the use cases and designing a user experience around that is a critical
first step in any software project. Therefore we started our Code Pulse design efforts by identify-
ing the key project use cases, listed in more detail in section 4.2. With a solid understanding of
the use cases and user personas involved, we designed the user experience that would satisfy
both the use cases and our requirements. This came in the form of low fidelity mockups and
wireframes, described in detail in sections 4.2.4 and 0.

What followed thereafter was a process of iterative design that went hand-in-hand with the de-
velopment, testing, and evaluation activity on the project as Code Pulse took form throughout the
period of performance.

3.3 Task 3 – Develop Prototype
Implementing the vision as expressed via the use cases and user experience design was the pri-
mary objective of this task. To achieve that goal, three key milestones were set as the develop-
ment targets for the project. The first, was an alpha prototype serving as the first demonstrable
version of Code Pulse to be used in evaluation sessions for feedback. The second milestone was
a beta prototype encompassing a more complete and refined version of Code Pulse based on the
feedback gathered from prior feedback. The third and final milestone was the first stable release,
version 1.0, of Code Pulse to be used by security professionals in their software assurance activi-
ties.

Identifying the engineering direction was the first focus of this task. This involved coming up
with the system design and architecture as well as identifying the technology stack that would

Approved for Public Release; Distribution Unlimited.
6

best satisfy the requirements and designs. Both of these are described in detail in sections 4.3.1
and 4.3.2.

We’ve long been adopters of agile methodologies in our software development practices and fol-
lowed a Scrum-like process for Code Pulse development. This typically involved focusing our
development activity around 2-3 week iterative Sprints. Conducting our development using these
periodic checkpoints gave us the opportunity for introspection to continuously evolve our engi-
neering and user experience designs during the early stages of the project, and performance and
usability fine tuning in the latter stages.

3.4 Task 4 – Test, Demonstrate, and Evaluate
This task served as an umbrella for three key efforts: software testing, demonstrations to poten-
tial users and interested parties, and conducting evaluations of the system to serve as a feedback
mechanism to steer development efforts. Activity in this task revolved around the alpha, beta,
and version 1.0 milestones described in the previous section. This task was kicked off by draw-
ing up a Test Plan, submitted on 4/30/2013, outlining the strategy for testing the application
throughout the period of performance. Using the Test Plan as the blueprint, testing was conduct-
ed throughout the development stages, although it was intensified in the run-up to the milestones
to adequately ensure the stability and usability of Code Pulse. With both the alpha and beta pro-
totype, a round of demonstrations and evaluations was conducted to assess the perception of the
tool’s utility, its usability, as well as the user buy-in into the presented concepts. The details of
this task’s activities are detailed in section 4.4.

3.5 Task 5 – Prepare for Technology Transition
Determining the technology transition path for a research project is essential to ensuring its sur-
vivability beyond the period of performance. Perhaps more importantly, it also provides the fo-
cus that a clear and defined target brings to the table. Efforts on this task were started by formu-
lating an initial project vision to define the expectations for the final state at the end of the period
of performance. The transition potential was further researched and explored which resulted in
the first draft of the Technology Transition Plan document, submitted on 6/6/2013, outlining our
research and initial project strategy. As Code Pulse crystalized its capabilities through feedback,
renewed focus was brought to the technology transition efforts to form an updated plan around
the evolving tool realities. Transitions options were further researched along with an in-depth
competitive market analysis to assess the tool potential. The final transition targets were selected
and expressed along with our research on the topic in our updated Technology Transition Plan
document, submitted on 5/30/2013.

3.6 Task 6 – Manage and Document
Staffing, budgeting, scheduling and reporting were the primary activities conducted under this
task. Selecting the project team and responsibilities from within the Secure Decisions talent pool
was one of the initial activities conducted for this task. Tracking our progress relative to our ob-
jectives was a constant activity as we tracked the budget and schedule. Finally, keeping our
sponsor appraised of our progress via the required quarterly technical status, monthly financial
reports, PI meeting presentations and discussions, and informal conversations with our Program
Manager was essential to ensuring the project remained on track to match our sponsor’s expecta-
tion as the project direction evolved throughout the period of performance.

Approved for Public Release; Distribution Unlimited.
7

4 RESULTS AND DISCUSSION
This section outlines the results of the Code Pulse efforts during the period of performance.

4.1 Tracing Tool Research
The end goal of this task was to select a dynamic tracing library that best meets the needs of the
project. This library would then be integrated into the developed solution to monitor target appli-
cations during runtime and collect the relevant data for weakness correlation.

4.1.1 Evaluation Criteria
To start off this activity, we established the evaluation criteria. These were drawn up based on a
variety of requirements ranging from performance considerations, to specific data constraints
needed to satisfy the project use cases. The list of the established evaluation criteria is as follows:

• Maturity – a mature and well-established tool will have sufficient testing to ensure max-
imum compatibility.

• Non-invasive instrumentation – to minimize impact on the target applications a con-
straint was established to ensure that any selected tool would leverage a passive instru-
mentation technique that did not modify the source code or binary. This would make the
tool adoption an easier process since no changes would be required by the software de-
velopment team.

• Light-weight – tracing a target application would have an impact on its resource alloca-
tion. To minimize resource contention a criterion was established to ensure that any se-
lected tool would be as minimally impactful as possible on the execution of the target ap-
plications.

• Licensing – to enable the integration of the selected tool within the final Code Pulse so-
lution, the license needed to be non-viral. So tools with a General Public License (GPL)
and other similar viral licenses were excluded from consideration.

• Data constraints – the following were specific data constraints needed by the Code
Pulse uses cases that the tools needed to satisfy (note that the associated timestamp for
each of the data points is required):

o Identify thread creation and destructions
o Identify method entries and exits with the associated thread identifiers
o Identify exceptions with the associated thread identifiers and locations in the

source
o Provide a mechanism to filter out source code elements from the tracing

4.1.2 Evaluated Tools
Basing our initial selection on the evaluation criteria we performed a survey to identify the po-
tential candidate tools. The identified tools along with a brief description of each is listed as fol-
lows.

• AspectJ1 – an open source library developed for aspect oriented programming. While
tracing is not the primary use case of AspectJ, the mechanisms used are very similar and
therefore we selected it to test its bytecode instrumentation capabilities.

• JVMTI – the Java Virtual Machine Tool Interface is a monitoring framework provided
by the Oracle Java Virtual Machine (JVM) to observe various metrics of the Java envi-

Approved for Public Release; Distribution Unlimited.
8

ronment. Although it has more to offer, one of JVMTI’s key capabilities is monitoring
execution traces.

• BTrace – an open source project aiming to bring DTrace’s renowned utility to Java.
• *J –another open source project aiming for low impact java execution tracing.
• VisualVM – a powerful profiler maintained by Oracle and bundled with the Java Devel-

opment Toolkit (JDK). As a profiler, one of its key features is monitoring execution trac-
es. Although VisualVM is a full featured application, we were hoping to leverage its trac-
ing backend.

• JDI – the Java Debug Interface (JDI) is the debugging Application Programming Inter-
face (API) for the JVM. Thanks to its deep integration into the runtime of the debugged
applications it can be leveraged to extract the execution trace information.

• BCI – although Byte-Code Instrumentation (BCI) is a technique rather than the name of a
library or tool, it is a technique that relies on an instrumentation API that is part of the Ja-
va language. Most modern profilers rely on it and similarly there was potential for us to
leverage it to monitor runtime execution.

4.1.3 Evaluation Methodology
A methodology was designed to evaluate the tool candidates. The intent was to test a realistic
range of scenarios that the tracing would encounter to ensure a realistic evaluation experience.
Evaluations were primarily focused on performance impact, data accuracy, data criteria fulfil-
ment, and robustness. Each of these points is discussed individually in the following paragraphs.

Performance considerations – to evaluate the performance of the dynamic tracing tools, timing
tests were conducted on traces of the test applications. A baseline test was conducted first to
identify the runtime timing of the application without any added tracing overhead. Subsequent
traced tests were timed and compared against the baseline timing to determine the slowdown fac-
tor for each of the evaluated tools. All tests were conducted on the same machine under similar
load constraints.

Data accuracy – ensuring the data accuracy was a challenge due to the large amounts of data
collected during traces. In addition the data order was non-deterministic for the most part due to
the multi-threaded nature of most current-day applications. The approach we derived was to
compare event counts across all tools and conduct spot checks of the data. Comparing event
counts proved to be valuable as it uncovered a number of differences between the tools and
helped us further understand their limitations.

Data criteria – evaluating the data criteria was a straight-forward testing process to identify
which if any of the criteria the tool did not satisfy.

Robustness – to evaluate the robustness of the candidate tools we established a set of testing ap-
plications used to trace against. The set, listed in Table 1, was designed to be broad enough to
test the varied scenarios that the tracing solution would encounter whilst still being small enough
to be manageable during the evaluation period.

Approved for Public Release; Distribution Unlimited.
9

Table 1. The test application set used for the dynamic tool evaluations

Test Application Description
Simple single threaded This is a simple single threaded application that we wrote to

have a deterministic trace at hand with expected results we can
use to ensure data accuracy.

Multi-threaded sorter Another test application we wrote to test multi-threaded trac-
ing using a sanitized application with a well-defined execution
behavior.

Glaz Treemap Demo A treemap demo from a Java visualization library used internal-
ly at Secure Decisions. It relies on Swing and Java2D and was
selected to test out Swing-based applications.

Eclipse The Java Integrated Development Environment (IDE) that needs
no introduction. It was selected to test traces of the Eclipse
Rich Client Platform (RCP).

JavaFX Scene Builder A tool used to visually build JavaFX user interfaces. It was se-
lected to test JavaFX-based applications.

WebGoat An OWASP sponsored project used to teach software engineers
how to write secure source code. It’s a web-based application
and was selected to test tracing of web applications.

4.1.4 Evaluation Results
Of the seven tools, three were dismissed after short evaluations due to significant issues:

• *J – Taking a closer look at *J revealed that it makes use of the Java Virtual Machine
Profiler Interface (JVMPI), which was deprecated many years ago since Java 5. In addi-
tion the project seems to be abandoned since it hasn’t seen any activity since 2004. For
these reasons further evaluations of *J were abandoned.

• BTrace – BTrace initially seemed promising due to a lightweight tracing approach. It is
designed as a minimal impact library and leverages modern bytecode instrumentation
techniques. However, after evaluating it on the prepared test applications we discovered
that it did not work consistently and outright failed to trace for some of them. Taking a
closer look at the codebase we also saw that it had not seen any activity in the past 6
months and did not seem to have an active or mature community. As a result we stopped
further evaluations of BTrace.

• VisualVM – With VisualVM’s established track record and large user base, the assump-
tion was that it had a strong potential to be leveraged for the desired dynamic tracing.
While VisualVM itself is an application, the intent was to interface with its backend API.
However, as we familiarized ourselves with the tool we discovered that VisualVM does
not have a formal API. The development team itself dissuaded developers from using the
open source codebase as an API since it was not designed as one and was tightly coupled
with their specific solution. A source code examination confirmed that and planned test-
ing with this tool was abandoned.

Approved for Public Release; Distribution Unlimited.
10

The remaining tools were evaluated closely both programmatically and with the test applications.
The evaluations yielded the following insights for each of the tools.

• AspectJ – Of the evaluated libraries AspectJ ended up being the fastest. It uses a BCI ap-
proach to instrument the desired code and does so at load time to reduce overhead during
runtime. In addition it is a very mature library with a large user-base. We tested AspectJ
extensively and whilst it traced most test applications successfully, there were certain tar-
get applications that AspectJ was unable to trace. After further investigations, including
looking at the source code for modifications, it became clear that attempting to modify
the AspectJ source to suite our requirements would yield a brittle solution and take con-
siderable effort. Ultimately, we decided to abandon the prototypes we built up around
AspectJ and settle on an alternate solution.

• JVMTI – To evaluate JVMTI we created a simple framework to interface with its API
and monitor target applications on the host JVM. Overall JVMTI worked well tracing the
test applications as expected. However, three downsides led us to eventually dismiss
JVMTI despite it being a close contender: the first was that it required that native code be
written to interface with it which would have complicated the development plans since
the target development stack was on the JVM; the second was that JVMTI did not sup-
port late attach-mechanisms to monitor target applications after they had already started
up; and the third reason was that it had a significantly higher performance slowdown on
the target applications than techniques relying on BCI for tracing.

• JDI – Of the dynamic tracing tools, JDI provided the richest insight into the traced appli-
cations behavior. However, it was also the slowest by a factor of 100. This is understand-
able since the debug use case is different than the tracing one. But with the significant
slowdown in the target application’s speed we dismissed JDI as a contending tool after
evaluating it on some of the test applications.

• BCI – Initially we did not fully evaluate the built-in BCI libraries since doing so would
have been a significant time commitment outside the scope of the initial evaluations.
However, in order to familiarize ourselves with the technique we did build a small layer
on top of it and tested it briefly to get a sense of the complexities in developing such a so-
lution. The conclusions we drew that going with a custom BCI solution would offer the
largest degree of flexibility, however, it required a non-negligible commitment to create
the bytecode injection layer necessary to instrument the target applications with.

Ultimately we realized that creating a custom tracing solution using the Java Virtual Machine
(JVM) byte-code instrumentation APIs would be the most effective and flexible long-term ap-
proach. The contending solution, AspectJ, was not designed for tracing use cases, and modifying
it to support those use cases more readily would have been a significant change to a large and
complicated codebase. Whereas leveraging the byte-code instrumentation APIs allowed us to
customize the solution for our needs and offered us a familiar codebase that we can maintain go-
ing forward to support requirements changes as they invariably arise.

The culmination of this task was to select the custom byte-code instrumentation implementation
as the most viable approach for the needs of this project.

Approved for Public Release; Distribution Unlimited.
11

Table 2. Tracing numbers with some of the test applications

4.2 Design
4.2.1 Dynamic Tracing Use Cases
Tracing target applications is a key activity that will be conducted by the users to collect the rel-
evant runtime data for observation and further analysis. The high-level Dynamic Tracing (DT)
use cases identified during our initial design phase are listed in Table 3.

Table 3. Dynamic tracing use cases

Dynamic Tracing (DT) Use Cases
DT1 Manually record the execution trace of a target application from the initial load

DT2 Manually record the execution trace of an already running target application

DT3 Automatically record the dynamic trace of an application in a headless setup environ-
ment

DT4 Configure a dynamic trace to exclude specific packages from the recording

4.2.2 Dynamic Enhanced Static Analysis Use Cases
For the dynamic enhanced static analysis approach, we identified five key high-level use cases.
The Code Pulse with Code Dx integration (CPDx) use cases, listed in Table 4, describe Code
Pulse specific static source analysis interactions within Code Dx.

Table 4. Dynamic enhanced static analysis use cases

Dynamic enhanced static analysis (DESA) Use Cases
DESA1 Triage only the weaknesses in an execution context

DESA2 Set all weaknesses in critical code paths to the highest priority

DESA3 Set all high severity weaknesses in the least frequently traversed code to the highest
priority

DESA4 For a given weakness, observe the different code paths that lead to it

DESA5 For a specific weakness, observe the timing of its execution during the collected
runtime traces

Approved for Public Release; Distribution Unlimited.
12

4.2.3 Penetration Testing Code Coverage Use Cases
The following use cases in Table 5 were identified for the penetration testing code coverage ap-
proach.

Table 5. Code coverage use cases

Penetration Testing Code Coverage (CC) Use Cases
CC1 Identify the application inventory

CC2 Identify the coverage gaps of the target codebase

CC3 Identify coverage overlaps across different testing techniques and tools

CC4 Share the coverage data with other stakeholders

4.2.4 User Interface Design
To solidify the user experience design, a series of wireframes and mockups were created and it-
erated over as we evolved our thoughts on the user interaction and data flow within the applica-
tion. Although the user interface design was a continuous process throughout the development of
the application, design efforts intensified at the start of the development milestones. Initially the
process involved designing the entire user interface as it was conceived. Progressively, this be-
came more a process of tweaks and refinements and the designs matured and solidified.

Figure 4. Early wireframe of a standalone interface for the Code Pulse dynamic tracer

Since Code Pulse was intended to be a data intensive application, visualizations were key to the
interface design to communicate the data in an effective and actionable manner. Although we
eventually settled on leveraging the increasingly familiar treemap visualization to display the
codebase coverage data, we explored various visualization techniques for different parts of the
interface as we evolved our user experience design. Figure 5 shows a mockup of how different
visualizations could be leverage for Code Pulse.

Approved for Public Release; Distribution Unlimited.
13

Figure 5. Layout and visualization exploration mockup

4.3 Development
This section details the development activity for Code Pulse starting with the system architecture
and ending with an overview of the final user interface.

4.3.1 Architecture
There are two top-level components to the Code Pulse system architecture: the dynamic tracing
component responsible for tracing code coverage of target applications at runtime; and the front-
end user interface responsible for presenting the trace information in an easily digestible manner.

A key constraint of the dynamic tracing subsystem is the requirement to have minimal impact on
the resources of the target application. To satisfy that constraint, the system had to be designed to
perform minimal work in the same execution context as the target application and instead rely on

Approved for Public Release; Distribution Unlimited.
14

another context to process the trace data. Therefore the dynamic tracing component was set up
into two distinct pieces using a client / server model. The agent (client) runs in the same Java
Virtual Machine (JVM) as the target application that will be traced. As the target application
runs, the agent listens in on the execution and sends the traced information to the server for pro-
cessing and storage. This high-level separation is shown in Figure 6.The separation in responsi-
bility between the observer and data is key to limiting the impact on the traced application and
reduce the footprint of the agent to the lowest possible condition. Note that nothing prevents the
agent and server from running on the same machine, and in fact is anticipated to be a frequent
use case.

Figure 6. Dynamic tracing high-level component architecture

The Code Pulse tracing agent consists of only the components required to inject instrumentation
into the application being traced and shuttle the data to the back-end for processing. The tracing
agent communicates with the back-end over Transmission Control Protocol (TCP), sending the
live trace coverage events upstream for processing and heartbeats containing current trace status,
as well as receiving tracing commands resulting from front-end User Interface (UI) interactions.

Once the data is received on the back-end, it is consolidated and sent to the front-end for display
purposes. This all happens on-the-fly, allowing the visualizations to be instantly updated with
live data.

4.3.2 Technology Stack
Code Pulse makes use of a wide array of technologies. Leveraging existing solutions allowed us
to focus our efforts on the areas directly impacting the Code Pulse capability.

4.3.2.1 Tracing Agent
Since the Code Pulse tracing agent is loaded into every application while it is being traced, a
conscious effort was made to keep the volume of code and the number of third party dependen-
cies as small as possible. Due to this concern, the tracing agent is written in pure Java with min-
imal third party dependencies.

Approved for Public Release; Distribution Unlimited.
15

We wrote a small common library to provide implementations for shared concerns between the
back-end and the tracing agent. These concerns include configuration, data queuing, and the pro-
tocol used for communication.

The only third party dependency used by the tracing agent is the ASM bytecode manipulation
framework2. This dependency provides the basis for the bytecode instrumentation required for
tracing.

4.3.2.2 Back-End
The back-end is not loaded into other applications during tracing, allowing us to relax the code
volume and dependency concerns. The back-end is written in Scala, and provides the functionali-
ty required for receiving and organizing trace data from, and control of, the tracing agent.

The back-end makes use of Slick3 and H24 for data storage.

4.3.2.3 Front-End
The front-end user interface is implemented as a web app with the ability to run in a variety of
Java servlet containers. There are two primary sub-components to the front-end – the server-side
component running on the servlet container and the client-side component running in the web
browser.

4.3.2.3.1 Server Component
The server component provides the heavy lifting for the front-end. It is primarily written in Sca-
la, utilizing several helpful libraries, including:

• Lift5 – provides the base web framework from which most of the Code Pulse front end is
built.

• Akka6 – provides an actor system framework, utilized by many of the data processing
and updating tasks.

• ASM2 – used for analyzing uploaded Java applications to build the code tree.

4.3.2.3.2 Client Component
The client component consists of the HyperText Markup Language (HTML), Cascading Style
Sheets (CSS), and JavaScript rendered and run by the web browser. Several third-party compo-
nents are leveraged for their rich functionality, including:

• bacon.js7 – provides functional reactive programming, allowing for clean implementation
of all the display elements that update in real-time.

• D3.js8 – provides a framework for data-driven DOM manipulation, allowing rich visuali-
zations that perform well.

• jQuery9 – primarily utilized for event handling and DOM manipulation.

4.3.2.4 Distributable Application
Despite Code Pulse being developed using web application technologies, it is packaged as a
desktop application. To enable that, we leverage node-webkit10, a wrapper around Google’s
Chromium Embedded11 project providing a customizable browser application. The end result is a
stand-alone downloadable application that behaves as a desktop application despite being written
as a web application.

Approved for Public Release; Distribution Unlimited.
16

4.3.3 Dynamic Tracer
At the heart of Code Pulse is the dynamic tracer. Dubbed bytefrog, this is the piece of the system
responsible for the live application trace data that is used for providing coverage information.

The tracing agent is a standard Java pre-main agent. It is inserted into the application being run
via the javaagent command line argument, at which point, it is able to hook into the JVM in-
strumentation API.12

The dynamic tracer records events as they occur during program execution. The primary events
of interest include when methods are entered and exited and when exceptions are thrown. These
events can then be processed to gain insight into which pieces of code were executed.

4.3.3.1 Instrumentation
To collect these events, callbacks must be inserted into the traced application at all points of in-
terest. The process of inserting these callbacks is known as instrumentation. A class transformer
is registered with the JVM, allowing classes to be transformed as they are loaded for execution.

During this transformation process, the required callbacks are inserted. As mentioned, the prima-
ry points of interest are points where methods are entered, points where methods are exited, and
anywhere an exception is thrown. Effort was made to keep these injected callbacks as minimal
and quickly executing as possible, with the end goal of slowing down the traced application as
little as possible.

4.3.3.2 Data Collection
The callbacks inserted during instrumentation insert data messages into a queuing system. This
queue is processed using several threads, sending chunks of data upstream to be processed.

An enormous amount of trace data is generated, at a rate faster than it can be processed. The
queuing system has a finite capacity, serving as a buffer. This means that applications exhibiting
short bursts of activity will see a minimal slow down (e.g., web applications). When larger bursts
of execution occur, the buffers fill up, and then execution will slow down to the rate at which the
resulting data is processed.

4.3.3.3 Data Protocol
Data is encoded before it is sent for processing. A special protocol has been designed to allow for
all necessary communication with the tracing agent, while at the same time keeping all commu-
nication compact. The protocol consists of a series of control and data messages, a sample of
which can be seen in Figure 7.

Approved for Public Release; Distribution Unlimited.
17

Figure 7. Snippet from the Code Pulse message protocol specification

4.3.3.4 Data Processing
The actual processing of the data happens within Code Pulse. After data is sent over from the
tracing agent, it gets queued up for data processing. The data is sorted into the proper order and
analyzed sequentially. This, essentially, creates a replay of the events in an environment where
they can be processed to fully glean code coverage data.

The constructed code coverage data then makes its way into a database and to the front end UI.
This entire process happens on-the-fly, giving near real-time display of code coverage to the us-
er.

4.3.3.5 Future Work
One major area of potential future work lies in the improvement of the dynamic tracing pipeline.
The current implementation is extremely powerful, and with this robustness comes a large
amount of data that is unnecessary for code coverage purposes. A live play-by-play stream of
data, as is provided now, is unnecessary for the task of determining code coverage. Adding the
data required to provide line-level coverage details would greatly increase the data flow, leading
to definite performance issues.

Fortunately, it is viable to overhaul the tracing pipeline to focus on the specific needs of tracking
code coverage. If the tracing agent itself knows how to track code coverage, this task can be im-
mediately performed, eliminating the need for recording every method entry and exit. The result
would be much less data gathered and less work done by instrumentation callbacks – which
means reduced overhead. With less data to transfer and process, the entire process becomes fast-
er and less impactful on the application being traced.

4.3.4 Alpha Prototype
The alpha prototype was completed on 12/9/2013 with features geared around the DESA use
cases.

4.3.4.1 Dynamic Tracer with Graphical User Interface
To control the instrumentation capability, a user-facing application was created following the
wireframes created in Task 2. Figure 8 shows the configuration screen of the Dynamic Tracer
developed during this reporting period. It was implemented with JavaFX and served as our pri-
mary mechanism to collect dynamic trace data for the alpha prototype. Files generated by the

Approved for Public Release; Distribution Unlimited.
18

tracer may be uploaded as part of a Code Dx analysis (or added to an existing Code Dx analysis),
providing Code Dx with the information it needs to make correlations between dynamic and stat-
ic analyses.

Figure 8. Dynamic Tracer trace configuration screen

4.3.4.2 Dynamic Trace Correlations
After using the dynamic tracer to create traces, the next step in using the traces to improve the
weakness triage process is to correlate them to the weakness information collected from the static
analysis tools. In doing so we faced some challenges.

The first challenge was the magnitude of the dynamic tracing data. While we’d managed to com-
press the information significantly on disk to reduce disk storage, the data volumes were still
significant for correlation processing. To overcome this, we decided to take the approach of gen-
erating a summary form of the trace data to satisfy the immediate requirements of the Code Dx
trace data integration. The tradeoff is that the data set stored does not include the full rich trace
information, but on the other hand, the data storage and correlation speeds were improved. As we
decide to expose more of the trace data, we’ll change the stored data to satisfy the new require-
ments, provided it does not prohibitively hinder the storage and correlation speeds.

The second challenge was in the different viewpoints between time-based and weakness-based
data. The obvious pivot point between the two types of data is the source code location, which is
exactly what we opted to use as our primary correlation mechanism. However, the method calls
observed in the traces were time-based and the weakness information is typically statically asso-
ciated with a particular method. Correlating purely based on the source code location would lose
the valuable time component of when these calls were made. To overcome this, our approach
was to compromise on the fine-grained accuracy of the method calls and instead aggregate the
time-based data into correlated time buckets. For instance, if a trace lasted for 100 seconds, we’d
create 100 time buckets, one per second, and associate the method calls per time bucket. There-
fore we’d be able to identify weakness-affected methods based on their general timeline as op-
posed to specific timestamp. The time length of each aggregate bucket is a variable that impacts

Approved for Public Release; Distribution Unlimited.
19

both accuracy and the amount of data stored. The larger the time bucket interval, the less data is
stored with the side-effect of having less accurate timing information for weakness correlation.

The Code Pulse dynamic tracer was tweaked to store only the weakness-correlation necessary
data, and the Code Dx data processing pipeline was upgraded to accept dynamic traces and cor-
relate them with static analysis tool results. With the correlated data, Code Dx was able to show
how often and when in the trace execution timeline weakness-affected source code is called.

4.3.4.3 Filtering Weaknesses Based on Trace Data
Since filtering plays a pivotal role in the triage workflow, the alpha prototype added two dynam-
ic trace-related filters to Code Dx.

The first of these filters was for the traces and their user-created segments. A new “Trace Seg-
ments” filter was added to the analysis run page. In the filter, a list of traces and segments within
each trace is displayed to the user. The segments are displayed in a tree hierarchy reflecting the
nesting order created by the user during the dynamic trace collection. Users can select one or
more traces, or expand the traces and select one or more segments. Whatever selection the user
makes, the whole page filters on just the subset of weaknesses that match. In this particular case,
the matching weaknesses are the ones in weakness-affected source that was executed in that
timeframe. If an entire trace is selected, then the weaknesses observed during that trace are
matched, or alternatively just the weaknesses observed during a specific time-range described by
a trace segment. Figure 9 shows the new filter populated with the information from a single
trace.

Figure 9. Trace segments filter showing before-and-after states of filter selection

The second new filter addition was for the call frequencies as observed from the dynamic traces.
Call frequencies were broken down into percentiles and split up between 10 groups ranging from
the least to the most called methods. These groups are displayed to the user in the filter and can
be selected in any combination. Figure 10 shows the breakdown and the weakness matches for
the 90th percentile and greater called methods. This leads to interesting analysis scenarios where
users can chose to prioritize the least or most called methods, including anything else in between.

Approved for Public Release; Distribution Unlimited.
20

Figure 10. Call Frequency filter showing before-and-after states of filter selection

4.3.4.4 Trace Details Page
We added the Trace Details page to Code Dx, for each analysis that included trace data. The new
page prominently features a treemap visualization of the analysis’s codebase. The treemap is
used to easily identify where correlations were made between static and dynamic analysis. The
treemap shown in Figure 11 uses red to indicate methods that only had static weaknesses, blue to
indicate methods that were traced but had no static weaknesses, and purple to indicate methods
that were both traced and had static weaknesses (indicating a correlation between static and dy-
namic analysis).

Approved for Public Release; Distribution Unlimited.
21

Figure 11. Trace details page from the alpha prototype

4.3.5 Final User Interface
Once the idea of Code Pulse as a live code coverage tool crystalized, we set out to create a new
user interface geared towards these new use cases. The new user interface was developed sepa-
rately from Code Dx, becoming a standalone application. This section describes the features that
we developed, and some of the challenges that we faced while creating the new interface.

4.3.5.1 Code Coverage Tool Development
A lot of effort went into the backend to integrate the tracing capability into a real time visualiza-
tion centric user interface. This differed from the original asynchronous nature of the collection
and analysis. As a result a number of significant extensions were needed to our tracing infra-
structure to support streaming data coming in at high volume to a distilled set that would be more
manageable by a responsive user interface.

Although we didn’t start from scratch with the user interface since we had a lot of key elements
already done from the Code Pulse alpha, putting it all together in a cohesive, efficient, and main-
tainable whole was the primary challenge while creating the final user interface. The result can
be seen in Figure 12.

Approved for Public Release; Distribution Unlimited.
22

Figure 12. Final Code Pulse code coverage user interface

4.3.5.2 Treemap Scalability
We’ve used treemaps in the past to represent codebase hierarchies and knew that while they are
incredibly effective tools to communicating hierarchy, codebases tend to result in tens of thou-
sands or even hundreds of thousands of nodes when explored at the method level of detail. With
the exception of 3D based graphics libraries, rendering that many nodes graphically is incredibly
resource intensive and ultimately impractical. Switching to a 3D based graphical library was too
risky a proposition for us at the current stage of the project so we explored alternative approaches
to limiting the number of objects rendered simultaneously.

We explored reducing the level of detail to focus on the class level instead of methods. However,
that significantly reduced the utility and fidelity of the coverage information. Looking at cover-
age information at a class-level aggregate significantly hampered the understanding of how much
of the code was actually covered. Having determined that codebase methods was the requisite
level of detail, we started exploring other techniques to limiting the number of methods repre-
sented in the treemap at a given point in time. We ultimately settled on showing a tree view of
the codebase’s packages and limiting treemap viewing to package selections. There were
tradeoffs to this approach. Seeing the full treemap is a much better visual at-a-glance indication
of the coverage than a tree view based approach. However, this was ultimately a solution that
could scale with the application and was the adopted approach.

Approved for Public Release; Distribution Unlimited.
23

Figure 13. Mockups of package tree view to control what is represented in the treemap

Figure 14 shows the final working version of the tree view of the codebase’s packages alongside
the corresponding treemap visualization. We divided the codebase into three abstract groupings;
one for application classes, a second for Java ARchive (JAR) files embedded the application
(such as third-party libraries), and a third for Java Server Pages (JSP) files.

Approved for Public Release; Distribution Unlimited.
24

Figure 14. The Application Inventory tree view next to the codebase treemap

In Figure 14, the “Classes” subtree is selected, causing the codebase treemap to display only the
hierarchy for that subtree, excluding any objects from the “JARs” and “JSPs” trees. Selection is
indicated by a teal highlight and a checkmark to the left of the objects’ names.

4.3.5.3 Instrumentation Filter
We found that the “JARs” grouping mentioned in the previous section tended to contain a large
majority of classes, while application classes were generally the primary focus of tracing for
code coverage. Our initial approach of tracing all detected classes suffered due to the perfor-
mance implications of adding instrumentation to a class. To remedy this, we added the instru-
mentation filter to the user interface which allows users to pick which classes should generate
trace data at runtime. The “Trace” column in Figure 14 displays checkboxes; by clicking any of
these checkboxes, users can toggle the instrumentation filter on or off for the corresponding
groupings.

Approved for Public Release; Distribution Unlimited.
25

4.3.5.4 Recordings
For the final user interface, we created the concept of “Recordings,” which marks a segment of
time started and ended by the user during which trace activity will be monitored. Code coverage
information is collected for each recording, which lets users mark different execution sessions
with recordings. For example, a “startup” recording could be created to mark the startup se-
quence of the traced application, then ended when that sequence finished. Recordings are inde-
pendent of one another, meaning that stopping and starting one recording does not have any
bearing on the state of other recordings.

When a recording is selected, any methods traced during that recording will be highlighted in the
treemap with a corresponding color. This makes it easy to see at a glance which methods were
covered, during which recordings. The user can change the color of any recording at any time by
clicking the color swatch next to the recording’s name.

We created two special pseudo-recordings to satisfy special cases; the Activity Ticker and the
Overlaps recording. Their user interface is similar in appearance to recordings, but their interac-
tion behaves differently; they cannot be stopped, and they cannot be selected in the same manner
as recordings. Both pseudo-recordings are always implicitly selected; they always affect the col-
oring in the treemap.

The Activity Ticker represents trace coverage data between some variable starting point and the
present. By default, the Activity Ticker represents all trace data, as if its starting point was the
beginning of the trace. The starting point may be modified to show the latest 10 seconds or latest
five minutes, for example. This is accomplished by selecting the appropriate time window from
the drop down menu shown in Figure 15. Methods that were traced during the Activity Ticker’s
time window will automatically be colored in the treemap, using its current color. When other
recordings are selected, this color will fade slightly to avoid drawing focus away from the select-
ed recording’s colors.

The Overlaps recording dictates the color displayed when multiple recordings are selected and a
method was encountered during more than one of them.

Figure 15. Changing the “All Activity” recording to a time segment

Approved for Public Release; Distribution Unlimited.
26

4.3.5.5 Trace Connection
We created a simple workflow for connecting traces to Code Pulse. When a user runs their appli-
cation with the Tracing Agent attached, the agent will attempt to connect to Code Pulse. If suc-
cessful, the message shown in Figure 16 will appear in the upper-right corner of the UI, notifying
the user of the new connection.

Figure 16. Agent Connection Message

The user can then click any of the links in the connection message to complete or drop the trace
connection. Once completed, the trace will immediately start generating data, and the user inter-
face will immediately start displaying that data.

While the trace runs, the Tracing Agent streams the traced application’s activity to Code Pulse’s
back end, which processes the event data into coverage data. Coverage data is regularly sent to
the front end.

The front end applies an orange flashing effect to draw attention to methods as they are called.
When a method is called, the corresponding node in the treemap and its corresponding parents in
the Application Inventory will turn orange, then gradually fade back to their original colors. Fig-
ure 12 shows this effect in action.

As the total trace coverage set updates, so do the colors of nodes in the treemap. For each select-
ed recording, if a method was called during that recording, its corresponding node in the treemap
will display the color of that recording.

4.3.5.6 Dependency Check Integration
We integrated with OWASP Dependency Check13, displaying which JAR files in the application
contained known Common Vulnerabilities and Exposures (CVEs). If a JAR contains one or more
CVEs, the corresponding entry in the Application Inventory will display a red “bug” icon; click-
ing this icon brings up the Dependency Check result for that JAR file. Clicking the icon on the
top-level “JARs” group brings up the full report which covers all JARs in the application, shown
in Figure 17.

Approved for Public Release; Distribution Unlimited.
27

Figure 17. Dependency Check report for third-party JAR files

4.4 Testing and Evaluations
This section describes our testing approach and demonstrations to potential users and interested
parties. This work was done to ensure what we developed was functioning as designed from a
quality perspective, demonstrate it to potential users, and evaluate its operation to determine if
it’s meeting user’s needs effectively.

4.4.1 Testing
Testing of Code Pulse was conducted from the start of development through alpha, beta, and
public release milestones. Details of our testing methodology is in our Software Test Plan deliv-
erable, CP-STP-0001. A summary of this approach is outlined in this section.

Code Pulse testing included unit, integration, system, user acceptance, functional, security, relia-
bility, performance, and portability testing. Any testing defects found were cataloged in our de-
fect tracking system for remediation. All critical known defects have been resolved.

Approved for Public Release; Distribution Unlimited.
28

4.4.1.1 Test Environment
Code Pulse testing was conducted on existing Secure Decisions hardware at its Northport and
Clifton Park, NY facilities in addition to evaluator sites. Testing was conducted on the three key
components of the Code Pulse software: the dynamic tracing agent monitoring target applica-
tions; the server component collecting the events observed during dynamic tracing; and the user
interface elements to analyze the results.

A diverse set of application was used for testing. For our alpha version (before we decided to fo-
cus on web applications), we tested a mix of web and desktop application, ranging from a few
thousand line of code to several hundred thousand.

For our beta testing we added the OWASP Zed Attack Proxy (ZAP) DAST tool to measure its
testing coverage, and several test application including BodgeIt, WAVESEP, WebGoat, and Jen-
kins.

4.4.2 Demonstrations and Evaluations
Our agile development approach and close interaction with end users caused us to go through
several iterations and changes in direction, but the end result we feel is something that provides
unique value and addresses a major need in application security testing today.

Demonstrations and evaluations went through two phases. The first was for our alpha version,
and the second was with our beta version that focused on code coverage.

When our alpha release was complete, we performed an extensive round of demonstrations and
evaluation sessions with a variety of potential users. The individuals or groups we met with were
both internal and external to the company and selected for their subject matter expertise in soft-
ware assurance or for their likelihood to be potential users of the tool, see Table 6.

Table 6. Code Pulse alpha version evaluations

Evaluator(s) Company/Organization Date
Ken Prole, Anthony DeMartini Secure Decisions 12/6-13/2013

Drew Buttner MITRE 12/18/2013

Steve Noel, Ganu Kini, Aaron Temin, et. al. MITRE 12/19/2013

Lenny Halseth Secure Decisions 12/20/2013

Michael Rosenstein Secure Decisions 12/27/2013

Jim Manico Independent 1/16/2014

Jerry Hoff WhiteHat 1/17/2014

The evaluations conducted in December were focused on the Code Pulse alpha and were struc-
tured to start off with a quick briefing on the project concept and the use cases. This was fol-
lowed by a demonstration of the alpha version with targeted discussions on all three primary use
cases: tracing; prioritization; and remediation. The following is a summary of the feedback we
got from the evaluations grouped per primary use case:

• Tracing use case:
o Evaluators thought that the tracing user interface was straightforward and did not

perceive the agent hook requirements to be a hurdle to adoption or usage.
• Prioritization use case:

Approved for Public Release; Distribution Unlimited.
29

o A primary concern for the evaluators was that they did not think it was realistic to
be able to generate a trace that captures the complete execution profile of an ap-
plication. Thus, they did not think that basing the prioritization on the trace data
was a good recourse.

o Due to how traces were likely to be captured, they were likely to be reflective of
typical execution patterns. However, attackers are likely to be prompting unusual
execution patterns that may not be observed in typical traces.

o Evaluators did not feel comfortable (temporarily) ignoring statically observed
weaknesses even if the weaknesses were not observed in code that’s part of the at-
tack surface.

o There was agreement that for performance impacting weaknesses there is value in
using call frequency to prioritize weakness remediation.

o There was interest in understanding which code was less frequently traversed to
prompt closer review and assessment.

o The treemap visualization was appealing to the evaluators and resonated with
them.

• Remediation use case:
o There was unanimous agreement amongst the evaluators that the best place to

view information pertaining to remediation should be in the IDE.
o There was interest expressed in being able to automatically determine if a vulner-

able code path as detected by the SAST tool(s) is feasible as observed from the
traces.

o Evaluators generally connected with the described remediation use case and ex-
pressed interest seeing the call graph generated from the traces but when pressed
to describe the value they would get from the call graphs, there were no clear an-
swers. It was difficult to assess the real versus perceived value from this round of
evaluations.

Generally speaking the reception of the Code Pulse alpha was lukewarm. The evaluators were
intrigued by certain concepts and features, however, overall they struggled to identify with the
key premise that a trace profile has utility in the prioritization process. As we discussed these
results, we realized that there was overall interest and enthusiasm for the parts of the system
dealing with code coverage. This prompted us to try an experiment and throw together a quick
proof of concept to further explore the idea.

The two evaluations we conducted in January 2014 were specifically requested to get a penetra-
tion testing perspective on our prototypes, particularly of the proof of concept code coverage
prototype that we’d developed. Their feedback on the Code Pulse alpha echoed what we’d heard
previously. However, when we showed them the code coverage proof of concept prototype they
were incredibly excited and enthusiastic at the concept. That’s when we realized that we were on
to something and focused on future work on the code coverage use-case.

For our beta code coverage focused release in April 2014, we again sought out subject matter
experts to get their feedback, particularly on the usability and utility of what we developed. Ta-
ble 7 lists these in-person evaluation session that we conducted.

Approved for Public Release; Distribution Unlimited.
30

Table 7. Code Pulse beta version evaluators

Evaluator(s) Company/Organization Date
Ken Prole Secure Decisions 3/21-4/8/2013

Jim Manico Independent 4/10/2014

Dave Wichers Aspect Security 4/15/2014

The feedback we received from these evaluators was very positive and all felt the user interface
was intuitive and the use-cases and value of Code Pulse’s visual representation was really im-
portant for penetration testers who are currently unaware of the testing coverage they are achiev-
ing.

Much of the feedback we received during these evaluations was added to our 1.0 or 1.1 release,
including making it easier to start tracing, usability tweaks, performance optimizations, and visi-
bility into library dependencies and their security state. Other feedback we received but did not
implement was added to our product roadmap.

4.5 Transition
The following is the results of our market and competitive analyses along with an outline of our
transition strategy for Code Pulse. A detailed description of our transition research and strategy
was submitted on 5/30/2014 in the Technology Transition Plan report.

4.5.1 Market Analysis
Trends in the cyber security market consistently indicate increases in the frequency and costs of
cyber attacks. In October 2013, the Ponemon Institute study of cyber attacks and their financial
impacts indicated that the average organizational cost of cyber crime is $11.6 million per year,
representing a 26% increase, or $2.6 million over the previous year.14 When seeking to deter-
mine the fundamental cause of such attacks, it is estimated that 90 percent of reported security
incidents result from exploits of defects in the design or code of software.15 Organizations are
faced with the added pressure to comply with regulations such as Health Insurance Portability
and Accountability Act (HIPAA), Payment Card Industry Data Security Standard (PCI-DSS),
and Federal Information Security Management Act (FISMA),16 and to control Information Tech-
nology (IT) budgets despite the threat of data and financial losses from cyber incidents. Those
organizations that minimize exploitable software flaws in their enterprise software, particularly
those vulnerabilities related to their industry’s security standards, reduce their exposure to risks
from cyber security attacks and risk of sanctions for non-compliance with industry standards.

Our analyses show that the software security market continues to grow at a healthy pace. Ac-
cording to a Gartner Group report, worldwide security software revenue totaled $17.7 billion in
2011, a 7.5% increase from 2010 revenue of $16.4 billion. Revenues continue to increase steadi-
ly within companies providing software assurance solutions such as IBM/Rational, experiencing
increases in revenue between 1.8% and 5.0% from 2008 to 2011.17 Klocwork announced the
largest quarter of bookings in company history for Q3 2012, with annual growth of 18%, driven
by demand in the US aerospace and defense sector for software security.18

Approved for Public Release; Distribution Unlimited.
31

4.5.2 Competitive Analysis
The competitive field of software quality assurance testing tools is quite extensive and mature,
and in some cases saturated. Given the discriminating features of Code Pulse, there exist oppor-
tunities for Code Pulse to establish a presence in selected testing domains such as:

• Code coverage analysis testing
• Penetration testing,
• Profiling, and
• Integrated Applications Security Testing (IAST)

A review of the code coverage analysis tools market reveals an extensive and mature field of
commercial, free, and open source tools ranging from stand-alone coverage analysis utilities to
extensive quality assurance testing tool suites. Several of these have reached a significant maturi-
ty level, and have been actively developed and maintained for more than a decade. Consequent-
ly, test and quality assurance engineers seeking code coverage analysis tools have a reasonably
robust choice of tools to select from. What is interesting to note amongst the set of tools in the
field is that the ones with staying power are those that have developed plugins for the major
software development frameworks, such as Eclipse and Visual Studio. It is a market filled with
abundant plugins, and it appears that for a product to remain a contender in this domain, it must
offer plugins to several of the available development and testing frameworks.

An analysis of the penetration testing tools market reveals a fairly well populated and mature
field of commercial, free, and open source tools. The tools within this domain consist of various
exploitation tools, password crackers, website scanners, and vulnerability scanners. Still other
tools provide more comprehensive and in-depth frameworks for testing and vulnerability reme-
diation and management. Several tools have met with success in the marketplace and have had
significant staying power, such as Metasploit, QualysGuard, Retina, and in the open source
world, OWASP ZAP. Distinctive within the penetration testing tool space however is the scarci-
ty of visualization tools, particularly as they relate to vulnerability scan analysis. Many applica-
tions support a command line interface, especially open source tools. A small selection of tools
provide Windows or web user interfaces including dashboards. However, the few vendors that
do provide dashboards (Acunetix, Nexpose, and LanGuard, for example) use them to manage
patching or organize remediation initiatives. None appear to use a dashboard to assess and dis-
play the coverage of their vulnerability scans, especially in real time, nor visually identify prob-
lem areas in code modules. This particular niche within the pen-testing tool environment can
present an opportunity for Code Pulse to enter this market. The Code Pulse combined dashboard
and visualization for presentation of real time assessment of vulnerability scan coverage appears
to complement existing tools, and can be a unique advantage in the penetration-testing tools
market.

An analysis of the profiler tools market reveals a well- populated and mature field of commer-
cial, free, and open source tools. The applications within this domain typically consist of a col-
lection of tools to tune computer Central Processing Unit (CPU) and Graphics Processing Unit
(GPU) performance, memory error detectors, thread error detectors, cache and branch prediction
profilers, heap profilers, stack overrun detectors, branch prediction profilers and call-graph tools.
The more advanced tools provide sorters, filters and visualizers to present results and provide
insight into performance bottlenecks. Commercial applications such as the ANTS Performance
Profiler and open source applications such as Valgrind provide comprehensive and mature profil-

Approved for Public Release; Distribution Unlimited.
32

ing solutions, complete with dashboard and visualizations for presenting performance metrics.
The area where Code Pulse could possibly enter this market would be by providing visualization
support of application execution results, visually identifying performance bottlenecks for the
lower end commercial tools that lack such a capability, such as ACTime Pro. There are however
few profiling tools that lack some sort of visualization capability. The market is replete with ro-
bust profiling tools, making the transition for Code Pulse with it current capabilities a challeng-
ing one.

An analysis of the Interactive Application Security Testing (IAST) tools market presents a rela-
tively new and immature market. There are few players actively involved in the development of
IAST tool solutions that combine dynamic and static techniques to improve the overall quality of
software application testing results. The goal of these tools is to provide an inside-out view that
complements the outside-in view of a purely DAST solution – for example, identifying the spe-
cific line of code where a security vulnerability occurred, or providing detailed visibility into
code coverage.19 No vendor appeared upon the IAST scene prior to 2012, and consequently no
vendor has necessarily established itself as a leader in the IAST space, presenting a potential op-
portunity for Code Pulse.

4.5.3 Transition Strategy
Just as the project direction shifted from targeting the DESA approach to settling on the penetra-
tion testing code coverage approach, the transition strategy evolved with the project. Although
we considered a number of potential avenues for the Code Pulse transition, the current key ele-
ments of our transition plan are listed as follows:

• Code Pulse was released as an open source tool to both benefit the application security
community as well as serve as a marketing vehicle for Code Pulse itself and our broader
Software Assurance work at Secure Decisions. Code Pulse is available on github.20

• Code Pulse was made an OWASP21 project in April of 2014. OWASP is large applica-
tion security community with a membership roster of over 42 thousand members. This
will provide Code Pulse with a large audience out of the gate to help encourage adoption
of the tool. In addition, OWASP has a large vibrant project inventory of 160+ projects
with the strong potential for synergistic activities. We’ve already started down that road
with the integration work we did with OWASP Dependency Check outlined in section
4.3.5.6.

• We will continue to explore the potential to release a “Pro” version of Code Pulse target-
ing professional penetration testers that have already adopted the open source community
edition of the tool and seek added capabilities. This version of the tool would be provided
for a licensing fee and would provide a revenue stream to support the tool’s maintenance
and continued development.

• The Software Assurance Marketplace (SWAMP) remains a strong potential transition site
for Code Pulse. At the time of this report’s writing we engaged the SWAMP team and
demonstrated the tool to them. Although they expressed interest, it is still early for them
to start exploring DAST related use cases and as such we shall revisit this in the future.

• A strong web presence serves as an anchor to point Code Pulse newcomers at and serves
as a marketing tool. Along-side the version 1.0 launch, we also launched the official
Code Pulse website at http://code-pulse.com.

Approved for Public Release; Distribution Unlimited.
33

Figure 18. Code Pulse website

• We’ve increasingly adopted social media to help promote Code Pulse, primarily focusing
on Twitter, with plans to expand the Code Pulse presence at Facebook and LinkedIn.

• We plan to seek speaking engagements to spread the word about Code Pulse and help in-
crease the tools’ adoption. Being part of the OWASP community has helped with that,
although we do plan on casting a broader net beyond OWASP to help promote the tool.

Approved for Public Release; Distribution Unlimited.
34

5 CONCLUSIONS
Of the lessons the learned in the Code Pulse effort, perhaps the most important one is to involve
evaluators as early as possible. The feedback we received from the subject matter experts played
a defining role in the direction of the project, and helped shape its final form. Code Pulse has
been released as an open source tool available to the application security community to help im-
prove their penetration testing processes. It is an OWASP project and has an active network of
security professionals to lean on as it slowly cracks out of its R&D cocoon. Code Pulse 1.0 was
release on May 2nd, 2014 and has since been updated twice to add new capabilities, improve the
tool’s usability, and address uncovered bugs. Code Pulse has been downloaded a total of 200
times since version 1.0 and continues to be actively promoted.

While we write this at the completion of the period of performance there is a long list of transi-
tion and capability enhancement activity we aspire to achieve with Code Pulse. In its current
form and as it continues to evolve Code Pulse adds an effective tool to the penetration tester
toolbox.

Approved for Public Release; Distribution Unlimited.
35

6 REFERENCES

1 http://www.sable.mcgill.ca/starj/
2 http://asm.ow2.org/
3 http://slick.typesafe.com/
4 http://www.h2database.com/
5 http://liftweb.net/
6 https://typesafe.com/platform/runtime/akka
7 https://github.com/baconjs/bacon.js/tree/master
8 http://d3js.org/
9 http://jquery.com/
10 https://github.com/rogerwang/node-webkit
11 https://code.google.com/p/chromiumembedded/
12 http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
13 https://www.owasp.org/index.php/OWASP_Dependency_Check
14 “2013 Cost of Cyber Crime Study, United States”, Ponemon Institute, October 2013,
http://media.scmagazine.com/documents/54/2013_us_ccc_report_final_6-1_13455.pdf
15 Build Security In, DHS Office of Cybersecurity and Communications, “Software Assurance”,
https://buildsecurityin.us-cert.gov/bsi/mission.html
16 “15th Annual 2010/2011 Computer Crime and Security Survey”, Computer Security Institute,
http://scadahacker.com/library/Documents/Insider_Threats/CSI%20-%202010-
2011%20Computer%20Crime%20and%20Security%20Survey.pdf
17 IBM 2011 Annual Report, http://www.ibm.com/investor/pdf/2011_ibm_annual.pdf
18 http://www.klocwork.com/blog/press-releases/klocwork-announces-record-quarterly-and-annual-results-for-2012/
19 http://blogs.gartner.com/neil_macdonald/2012/01/30/interactive-application-security-testing/
20 https://github.com/secdec/codepulse
21 https://www.owasp.org/

Approved for Public Release; Distribution Unlimited.
36

7 ACRONYM LIST
API Application Programming Interface

BCI Byte-Code Instrumentation

CCS Cascading Style Sheets

CPU Central Processing Unit

CVEs Common Vulnerabilities and Exposures

DAST Dynamic Application Security Testing

DESA Dynamic Enhanced Static Analysis

DHS Department of Homeland Security

DT Dynamic Tracing

FISMA Federal Information Security Management Act

GPL General Public License

GPU Graphics Processing Unit

HIPAA Health Insurance Portability and Accountability Act

HTML HyperText Markup Language

IAST Interactive Application Security Testing

IT Information Technology

IDE Integrated Development Environment

JAR Java ARchive

JDI Java Debug Interface

JDK Java Development Toolkit

JSP Java Server Pages

JVM Java Virtual Machine

JVMPI Java Virtual Machine Profiler Interface

OWASP Open Web Application Security Project

PCI_DSS Payment Card Industry Data Security Standard

RCP Rich Client Platform

SAST Static Application Security Testing

SWAMP Software Assurance Market Place

TCP Transmission Control Protocol

UI User Interface

ZAP Zed Attack Proxy

Approved for Public Release; Distribution Unlimited.
37

	Contents
	List of Figures
	List of Tables
	1 Executive Summary
	2 Introduction
	2.1 Code Pulse Evolution
	2.2 Static Analysis Workflow Problem Area
	2.3 Penetration Testing Code Coverage Problem Area

	3 Methods, Assumptions, and Procedures
	3.1 Task 1 – Investigate Dynamic Analysis Tools
	3.2 Task 2 – Design Prototype
	3.3 Task 3 – Develop Prototype
	3.4 Task 4 – Test, Demonstrate, and Evaluate
	3.5 Task 5 – Prepare for Technology Transition
	3.6 Task 6 – Manage and Document

	4 Results and Discussion
	4.1 Tracing Tool Research
	4.1.1 Evaluation Criteria
	4.1.2 Evaluated Tools
	4.1.3 Evaluation Methodology
	4.1.4 Evaluation Results

	4.2 Design
	4.2.1 Dynamic Tracing Use Cases
	4.2.2 Dynamic Enhanced Static Analysis Use Cases
	4.2.3 Penetration Testing Code Coverage Use Cases
	4.2.4 User Interface Design

	4.3 Development
	4.3.1 Architecture
	4.3.2 Technology Stack
	4.3.2.1 Tracing Agent
	4.3.2.2 Back-End
	4.3.2.3 Front-End
	4.3.2.3.1 Server Component
	4.3.2.3.2 Client Component

	4.3.2.4 Distributable Application

	4.3.3 Dynamic Tracer
	4.3.3.1 Instrumentation
	4.3.3.2 Data Collection
	4.3.3.3 Data Protocol
	4.3.3.4 Data Processing
	4.3.3.5 Future Work

	4.3.4 Alpha Prototype
	4.3.4.1 Dynamic Tracer with Graphical User Interface
	4.3.4.2 Dynamic Trace Correlations
	4.3.4.3 Filtering Weaknesses Based on Trace Data
	4.3.4.4 Trace Details Page

	4.3.5 Final User Interface
	4.3.5.1 Code Coverage Tool Development
	4.3.5.2 Treemap Scalability
	4.3.5.3 Instrumentation Filter
	4.3.5.4 Recordings
	4.3.5.5 Trace Connection
	4.3.5.6 Dependency Check Integration

	4.4 Testing and Evaluations
	4.4.1 Testing
	4.4.1.1 Test Environment

	4.4.2 Demonstrations and Evaluations

	4.5 Transition
	4.5.1 Market Analysis
	4.5.2 Competitive Analysis
	4.5.3 Transition Strategy

	5 Conclusions
	6 References

